Advanced Machine Learning Methods for Major Hurricane Forecasting
نویسندگان
چکیده
Hurricanes, rapidly increasing in complexity and strength a warmer world, are one of the worst natural disasters 21st century. Further studies integrating changing hurricane features thus crucial to aid prediction major hurricanes. With this mind, we present new framework based on automated decision tree analysis, which has capability identify most important cloud structural parameters from GOES imagery as predictors for intensification potential Atlantic Pacific oceans. The proposed been proved effective predicting hurricanes with an overall accuracy 73% 6 54 h advance (both regions combined).
منابع مشابه
Advanced machine learning methods for wind erosion monitoring in southern Iran
Extended abstract Introduction Wind erosion is one the most important factors of land degradation in the arid and semi-arid areas and it is one the most serious environmental problems in the world. In Fars province, 17 cities are prone to wind erosion and are considered as critical zones of wind erosion. One of the most important factors in soil wind erosion is land use/cover change. T...
متن کاملMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملDrought forecasting using new machine learning methods
In order to have effective agricultural production the impacts of drought must be mitigated. An important aspect of mitigating the impacts of drought is an effective method of forecasting future drought events. In this study, three methods of forecasting short-term drought for short lead times are explored in the Awash River Basin of Ethiopia. The Standardized Precipitation Index (SPI) was the ...
متن کاملApplying Machine Learning Methods for Time Series Forecasting
This paper describes a strategy on learning from time series data and on using learned model for forecasting. Time series forecasting, which analyzes and predicts a variable changing over time, has received much attention due to its use for forecasting stock prices, but it can also be used for pattern recognition and data mining. Our method for learning from time series data consists of detecti...
متن کاملForecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function
Stock market forecasting has attracted so many researchers and investors that many studies have been done in this field. These studies have led to the development of many predictive methods, the most widely used of which are machine learning-based methods. In machine learning-based methods, loss function has a key role in determining the model weights. In this study a new loss function is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2022
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs15010119